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The story up till now

* Step 1: We set out with our original goal of learning a model pg that gives
maximum likelihood to our datapoints x;

* Step 2: We introduced latent variables z such thatz ~p(z) and x | z ~ p(x | 2),
which gave us the marginalization p(x) = [ p(x | z)p(2) dz

e Step 2a: When we assumed p(z) = N (z;0,1),and p(x | 2) = N'(x; Wz + b, 0°I), we
could solve for (W, b, 62) in closed form! This gave us PPCA.

 Step 3: We set up variational inference because sadly, not everything in life is
Gaussian and linear. ThIS gave us a new EV|dence Lower Bound (ELBO) objective:

méiXZlnge(xi) _mQaX max ZJ(](lel) logpe( ir )
i=1

q |xl q (lel)

e Step 3a: When the integral is easy to evaluate, we can alternate between optimizing w.r.t. 6
with g(x | z) fixed and vice versa, leading to the Expectation Maximization (EM) algorithm.




The story continues with Variational Autoencoders

* Before introducing VAEs formally, let us decompose the ELBO further

pe(x;, z)
maxlog pe(x;) = max max E j (z|x;) log dz

l l q(z|x;)

Pe (xuz) .

> max E., lo Evidence Lower Bound (ELBO)
z 2~y (2 %) ng(z |x;)
= Mmax § Ezvqy(zlx:) log pg (x;|2) h(2)
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- nelaXZ Ez~qy(z |x) 10800 (xi12) + EZ“"M(Z'{‘” log qy(z|x))
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Variational AutoEncoders (VAEs): Setup

e We have three models we need to define for VAE model

1. Inference model q,,(z | x): We will define as q;,(z | x) = N'(z; py(x), allzj(x)l), i.e., a
normal distribution with learned mean and covariance

Hy (x)

Inference Model

qy(Z | x)
log a7 (x)

Ensures variance is

always positive and

improves stability of
X training!

Datapoint Can be any NN

We will define prior for latent variables as p(z) = N'(z; 0, 1)



Variational AutoEncoders (VAEs): Setup

 \We have three models we need to define for VAE model

3. Generative model pg(x | z): We will define as
* po(x|2) = N(z;ug(2),n*I), i.e., a normal distribution with learned mean and variance
* po(x|2z)=Cat(z;my(2)),i.e., acategorical distribution with learned class probabilities

Generative Model
Latent 1o (2)

z po(x |2)

Can be any NN

* Note this can be defined in many different ways, yielding different models (such as a categorical
distribution over 255 values of each pixel)



Variational Autoencoders: Training

Inference Model Sample Generative Model

1o (2)

ay(z| 1) z ~ N (z |1y (), o3 (1) ear

"> 2
[ - log o

Datapoint x

ELBO Objective

E;~q, v 108Pe (x| 2) = KL (qy(z | %) 11 p(2))




Variational Autoencoders after Training

 Suppose we have learned VAE using the ELBO loss (details to follow).
* Then, as a generative model, we just sample z ~ p(z) and use the fixed
generative model pg(x | z)

Generative Model Sample

ue (2>

po(x | 2) x ~ N(x|ug(z),nl)




Computing the ELBO Loss

(
Lg w(x) z~q¢(z | %) log Po (x | Z)' + IEZ~C[¢(Z | x) log |

 Term 1 (Reconstruction Error)
* Because py(x]2) = N (x|ug(2),nI), we have log pg (x|z) = —2—177 |l — /.lg(Z)”z + const.

* We can approximate the expectation over z ~ qy,(z |x) by an average over g, (z |x)

* Recall that the expectation of a function f(z) w.r.t. a random variable z ~ p can be
approximated from i.i.d. samples z;~p,j = 1, ..., M, via Monte Carlo averages

Epplf @] = | f(Z)p(Z)dx~sz(z]

* Applying the above formula to M i.i.d. samples z; ~q¢(z | x) we get reconstruction error

E, g, llog po(x | 2)] = zlogpe(x| )—ZUMEIIx e ()13



Computing the ELBO Loss

(
LB w(x) z~q¢(z |x) log Po (x | Z)l + IEZ~C[¢(Z | x) log |

* Term 2 (Regularization to Prior)

* Since By-q, () 108 70 o = ~KL(ay(@l2) 1| (@), ay(2 1 %) = N(2 | iy (), 65D,

p(z) = N(0,I), the second term is a KL divergence between two d-dimensional
Gaussians, which has a closed form solution

KL(N (uy, o£1) 1| N (up, 051)) = log( 1) — E_|_ 1 |2|012 2115
2

* Applying the above formula to our VAE model yields,

do? z
KL(qy(z | x) 1l p(2)) = —log (Gw(x)) + oy (%) +2||u¢(x) |12

* Note this term does not require any sampling w.r.t. Z because the expectation is computed
in closed form thanks for the KL formula for Gaussians.

+ constant



Maximizing ELBO: How to Optimize?

* ELBO objective: We want to solve the following optimization problem:
Po (X, 2)
max Lg 4 (X; z E, ) log

* Simple idea: Just alternate gradient ascent wrt 8, 1y on objective function

Or+1 = O + “ (Qk:lpk)

Yr+1 = Pr + 05 (Hk»l/Jk)

oY



Stochastic Optimization of ELBO wrt @

* Issue: Computing V4 (ELBO) is not easy because of expectation w.r.t. latent z.

* Solution: Compute an unbiased estimator

Vo Lg 4 (x) =V, ]Ez~q¢(z|x) [log(pe (x| 2))] + Vo IEZ~q¢(Z' X) [log (q;é?ﬂ)]

— IIE':z~ql/,(z|x) [VG logpg(x | Z)]

2
= = % II5:z~q,1/,(z|x)v6? ‘ |x — g (Z)”z

* We can take sample averages to compute an unbiased estimator
» For each datapoint x, compute g, (Z | x) through encoder, which gives p,,(x), allzj(x)

* Sample z; ~ N(,ulp(x), allzj(x)l), find ug (zj) through decoder

* Estimate gradient from M samples: VgLg ,,(x) = —MLMZ]- Vo ||x — 1o (2)]15



Stochastic Optimization of ELBO wrt Y

* Here, we cannot just switch gradient and expectation because both are wrt to Y

VipEzqyzin[l08Po (X, 2) —logqy(z | X)] # Ezvq(z1x)Vy[log pe(x, 2) —logqy(z | x)]

* Reparameterization trick
* Because qy(z | x) = N(z; py(x), oy (x)I), we can rewrite samples z ~ qy,(z | x) as

zy, = g6, Y, x) = uy(x) + oy(x)e for e~ N(O,1)

* With this change of variables, we can rewrite the gradient of the loss as:
VLo (x) = VyE, g, (z1x) [l08 P (X, 2) —logqy(z | x)]

f Y = VyEe-nco,n[logpe(x, zy) —log qy(zy | )]

~ qy(2[x) V. f = g(p.x)
/? 1‘/ /T\ e Gradient and expectation can now be switched! So as before,
we compute an unbiased estimator by sampling many €



Putting it all together

e Variational Autoencoder
 We modelled inference and generative model as deep networks
* We interpreted ELBO as an expected reconstruction error plus a KL-regularization to prior
* Then, we rewrote the sampling in the latent space using the reparameterization trick
* Finally, we derived stochastic gradient estimates to optimize the ELBO and learn a VAE

oy ()

Inference Model Sample Generative Model

1o (2)

qy(z | x) z|x~N(z| puy(x), aj(x)l) po(x | 2)

log a5 (x)

Datapoint x

ELBO Objective

E;~q, v 108Pe (x | 2) — KL (qy(z | %) 11 p(2))




VAE’s in Action

* gy (z | X) = N(z | py(x), 05 (x))
*p(z)=N(z]0,I)
* Do (x | Z) = CClt@gOTiC(ll (x | Tlg (Z)) Note this is different from the model considered up till now!

* Encoder network: x € RP -> Linear(D, 256) -> LeakyRelU -> Linear (256, 2d) ->
splitinto u € R%,logo? € R?

* Decoder network: z € R? -> Linear(d, 256) -> LeakyReLU -> Linear(256, D) ->
softmax



VAE’s for Generation of MNIST Digits
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Fig. 4.4 An example of outcomes after the training: (a) Randomly selected real images. (b)
Unconditional generations from the VAE. (¢) The validation curve during training



VAEsS: extensions

* So far, we have seen how to model p(x) via VAEs.

* Many machine learning applications requires beyond learning p(x):
* Conditional generation, i.e., sampling from p(x | y) with a given class label y
* Classification, i.e., sampling from p(y | x) with a given sample x

* Answer: We can extend the VAE paradigm to model p(x, y)



Joint VAE

* Regular VAE: start from log pg (x) and derive its ELBO [ g(z | x) log ZH(ET;CZ)) dz

* Here, since we want to model py(x, y), let us derive ELBO for log pg (x, y)

max Eyy.p g, 10806 (X, ¥)

= MAXMAX Exyp o [[qul,(zlx,y) logpg(x12,y) — KL[qy(z | x,¥) || pe(z | )] + logpg (y)]

e Details in the next slide. Spoiler alert: the ELBO derivation is almost the same as before
* Architecture:

= Inference Model
Datapoint x ay(z | x,y)

[0,0,1,0] —
Label y

Sample Generative Model

Z,
7~ N (2| y(x,9), 026 1) o2y AL
log o2




Joint VAE: ELBO

* Let qy (z]x, y) be

logpe(x,y) = [ qy(z | x,¥)logpe(x,y)dz = [ q(z | x,y) log

Therefore, log pg

= max ]Eqw(ZIx,y)

Y

the variational distribution. Observe that

po(x,y,z) dz
po(zlx,y)

po(x,y,z) qy(zIx,y) d
Z
qdy(z1x,y) e (zlx,y)

| qy(z | x,y)log

f qy(z | x,y)log SZglz ;)) dz| + f qy(z | x,y) log Z‘:Z::ﬁ dz
Evidence Lower Bound (ELBO) KL[q(z|x,y) || po(z|x,y)]
_ po(x.,y,z)
(x1y)= ml/?X ]Eqw(zlx,y) log Ty (ZI%,y)

po(zly)
ql/)(zlxry)

log +log pg(x | y,2) + log pg (3')]

— Eqyzixy)

ogpe(x1y,2) — KL|qy(z |1 x,¥),00(z | ¥)| + logpe (¥)



Joint VAE: Training objective

* The training objective is given by
mé?x Jeond = II3x,y~pdata log pg(x,y)
= MAXMAX By piara [qup(zlx,y) logpg(x | z,y) — KL[qy(z | x,¥) || pe(z | ¥)] + logpe (y)]

* Whatare qy(z | x,¥), pe(x | 2,¥), pe(z | ¥)?

* They are similar to what we needed in regular VAEs, with an additional input y

* Whatis pg(y)?

* This is a new term denoting the prior probability on class labels

e Answer: next two slides



Joint VAE: Setup

e We have three models we need to define for VAE model

1. Inference model qlp(z | x,y): We will defineas q,(z | x,y) =
N(z; py(x,y), alp(x y)I), i.e., a normal distribution with learned mean and covariance

/'lt,b (xr y)
= 1
Datapdnnt x Inference Model
Az | x,y)
[0,0,1,0] log oy, (x,y)

One-hot Label y

Ensures variance is

always positive and

improves stability of
training!

Can be any NN

p(zly) =N(z0,I)

po(y) = Categorical ()



Joint VAE: Setup

 \We have three models we need to define for VAE model

4. Generative model pg(x | z,v): We will define as
* po(x12y) =N(z;ug(z,y),n?l),i.e., anormal distribution with learned mean and variance
* po(x12,7y)=_Cat(z;mg(z,y)),i.e., acategorical distribution with learned class probabilities

Latent

4 Generative Model

po(x 12,9) Ho(2,7)

[0,0,1,0]
One-hot Label y

Can be any NN

* Note this can be defined in many different ways, yielding different models (such as a categorical
distribution over 255 values of each pixel)



Joint VAE: Training objective

* So far, the training objective is given by

mng ]cond = IEx'J”"pdata log Do (x, y)

= MAXMAX By piara [[qul,(zlx,y) logpe(x12,y) —KL[qy(z | x,y) || pg(z | y)] + logpg (y)]

y /. Inference Model
Datapoint x qy(z | x,y)

[0,0,1,0]
Label y

Sample Generative Model
Uo (Z, y)

Z~]\f(z|y¢(x,y),aj,(x,y)l) pG(xlzty)

log o2

* This allows us to do conditional generation
* Specify a class y that you want to sample from
* Sample from pg(z | y), which is a Gaussian N'(z; 0, 1)
« Sample from the conditional generation pg(x | z,y)



Joint VAE: Training objective

* So far, the training objective is given by

mBaX IEx,y~pdata lOg Po (x» y)

= méiX mj}ix IIE:x,y~pdata [[Eq,p(zlx,y) logpe(x | 2,y) — KL[qw(Z | x,y) || pe(z | y)] + logpe (}’)] =] cond

* Hold on... Classification, i.e., the distribution of y given x is not taken care of

* How can we also model classification?
* Again, let us start with MLE principle: Ey y.p, . logqy(x,y)
* Define qy,(x,¥) = qy (¥ | X)Pgata(x), where g, (¥ | x) is a classifier
* Exy~py.a 1080y (%, Y) = Exyp,... 10gqy (¥ | x) + const. not depending on ¢
* This gives the classification loss J¢s = Exy~p,... 108Gy (¥ | X)

* The final objective is given by J.ong + 4) c1s
* They originate from the MLE principles, since it is the sum of two log-likelihoods



Joint VAE: Summary

MAX MaX Exyp,, [Eqw(m,y) logpe(x 12,y) — KL[qy(z | x,¥) || pa(z | ¥)] + logpe(¥) + Alog gy (¥ | x)]

Datapoint x
[0,0,1,0] —
Label y

Inference Model
ql/)(z | X, y)

log o2

Sample

Z ~ N(Z | ,uzp(xry)i Ui(x,y)l)

Classifier

Clzp(y | x)

Generative Model

pe(x12zy)

ue(z,y)



